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Abstract. The pressure profile and plasma shape, parameterized by elongation (κ),
triangularity (δ), and squareness (ζ), strongly influence stability. In this study, ideal
stability of single null and symmetric, double-null, advanced tokamak (AT) configurations
is examined. All the various shapes are bounded by a common envelope and can be
realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P0/〈P〉 ~
2.0–4.5, weak negative central shear, high qmin (>2.0), high bootstrap fraction, an H-mode
pedestal, and varying shape parameters. The pressure profile is modeled by various
polynomials together with a hyperbolic tangent pedestal, consistent with experimental
observations. Stability is calculated with the DCON code and the resulting stability
boundary is corroborated by GATO runs.

1.  Introduction
Plasma boundary shape and the pressure profile are both known to strongly influence

global stability. These parameters are especially important in advanced tokamak (AT)
configurations. The effect of boundary shape and pressure profile is systematically studied
with the aim of obtaining the optimal βN.

We start with a specified pressure profile composed of a polynomial for the core plus a
hyperbolic tangent function for the pedestal. The pressure peaking factor, P0/〈P〉, is varied
by varying bn in the polynomial, Pn

' (ψ) = -P0n
' [ 1 + bn ψ – ( 1 + bn) ψ2 ] where ψ is the

normalized poloidal flux, Pn
'  is the derivative of the pressure profile, and -P0n

'  is its value
at ψ = 0. The additive hyperbolic tangent function uses a pedestal pressure derived from a
scaling law based on an experimental fit to DIII-D data. Model temperature and density
profiles are then derived consistent with the pressure profile. The bootstrap current is
computed using the NCLASS formulation together with the temperature and density
profiles. A seed current that fills in the current profile at the center is added to the
bootstrap current to fully specify the current profile. The seed current also has the effect of
fixing q0 and is such as to produce weak negative central shear in the resulting q-profile.

Before the equilibrium can be obtained the boundary must be specified. A boundary of
the form R = R0 + a cos [θ + sin-1δ sin θ], z = κ a sin [θ + ζo,i sin(2θ)], where R0 is the
major radius, a is the minor radius, δ the triangularity, κ the elongation, and ζο,i are the
outer and inner squareness. Having the pressure and current profiles specified together
with the boundary, it is possible to solve for the equilibrium using the TEQ package in
CORSICA. The resulting equilibria possess the following general characteristics of AT
discharges: weak negative central shear with high qmin (q0 ~ 2.5–2.7 and qmin ~2.1–2.4),
fBS ~ 0.70–0.95, Ip ~ 0.9–1.1 MA, and an H-mode edge pedestal.



Once the equilibrium has been computed, stability analysis is performed. n = 1 and 2
ideal stability is calculated within CORSICA using the DCON package. Ballooning
stability is evaluated using a ballooning package also contained within CORSICA. The
GATO ideal stability code is also used to crosscheck n = 1, 2 stability. For all stability
calculations, an ideal conducting wall at the location of the DIII-D vacuum vessel is
assumed. The various stability limits are found by incrementing the central pressure and
repeating the above procedure. The entire process is repeated for each polynomial and
value of shape parameter (κ, δ, and ζo). The parameter space encompassed by this study is
κ = 1.8, 1.9, 2.0; δ = 0.5, 0.65, 0.8; ζo = 0.0, 0.1, 0.2, and six polynomials (bn = –2, –5/3,
–4/3, –1, –1/2, 1; the profile broadens with increasing bn) yielding a range of peaking
factors of 2.0–4.5.

2.  Stability Limits for Symmetric AT Equilibria
Figure 1(a,b) shows the global stability results. Figure 1(a) plots the n = 1 beta limit as

a function of the pressure peaking factor, P0/〈P〉 for the entire data set. In this case the
maximum βN clearly increases inversely with the peaking factor. A power law fit to the
data is also shown in the plot and yields a relatively strong dependence on the peaking
factor of (P0/〈P〉)–1.32. Similarly, Fig. 1(b) plots the n = 2 beta limit. Here, the envelope of
maximum βN values also scales inversely with the peaking factor. However, due to the
large variation with shape parameters, an exponent could not be inferred. At large peaking
factors the limiting βN tends to result from the n = 1 mode, while at low peaking factors, it
results from the n = 2. The crossover between the n = 1 and 2 occurs at a peaking factor
~2.5.

Fig. 1.  Limiting βN values for the n = 1 (a) and n = 2 (b) ideal modes as a function of P0/〈P〉 for all
combinations of κ, δ, ζo, and peaking factor.

The lower values of βN for the n = 2 mode (in the range 1.5–2.5) generally correspond
to a first-stability limit for equilibria with shape parameters at the extremes of the their
ranges, such as δ = 0.8 with ζ0 = 0.0. As the pressure is increased, the n = 2 mode
generally stabilizes and a second n = 2 limit is encountered in the βN range of 3–5. In Fig.
1(b) only the lower of these two value of the n = 2 β-limit is plotted. The variation in the



data is higher than for the n = 1 mode and increases with decreasing peaking factor. This
remains true even if the lower βN values are ignored. In general, the n = 1 limit is
dominated by profile effects, whereas shape plays a more significant role with respect to
the n = 2 limit, with the highest βN values at a given peaking factor occurring for an
optimal shape

Two ballooning unstable regions were often found to exist. The lower ballooning beta
limit was found to be uniformly in the range 2.7–3.0 except at the lowest peaking factor
where it increased abruptly to 5.5 for a restricted set of shapes.

As is evident in Fig. 1 there is a large variation in the data at any particular value of the
peaking factor. This results from the complicated dependence of the beta limit on the
shape factors, δ, κ, and ζo, as well as on the details of the pressure profile through bn as
shown in Fig. 2. Here the n = 1 and 2 limits are plotted versus δ (at fixed κ, ζo, and
peaking factor) and versus ζo (at fixed κ, δ, and peaking factor). For the δ-scan of
Fig. 2(a), the maximum βN is limited everywhere by the n = 1 mode. In contrast, for the
ζo-scan of Fig. 2(b), the β-limit is set everywhere by the n = 2 mode. The n = 1 δ-scan
shows an optimal intermediate value of δ ~ 0.6, whereas the n = 2 ζo-scan is monotone
decreasing with ζo. For the δ-scan, an n = 1 internal mode actually sets the β-limit at δ =
0.8.

Fig. 2. Parameter scans of maximum βN vs δ at fixed κ and ζo (a) and vs ζo at fixed κ and δ. The
peaking factor is ~2.5 for both (a) and (b).

Figure 3 shows a parameter scan of β-limit for the n = 1 and 2 modes versus κ for
several values of ζo at fixed δ and peaking factor. The n = 2 mode always sets the β-limit.
Again the parametric dependence is complicated. Increasing κ leads to a higher β-limit
except at the largest squareness. Considering all cases the β-limit is 4.6 for a peaking
factor of ~2.5 with κ = 2.0, δ = 0.65, and ζo = 0, and results from an n = 2 mode.

The ideal stability code GATO was used to check some of the DCON results presented
here. For the six cases studied, corresponding to the ζo parameter scan of Fig. 2(b), the β-
limits either agree exactly or differ by at most 10%, with DCON generally predicting a
slightly higher β-limit than GATO.



Fig. 3. Parameter scan of maximum β vs κ at fixed δ
and peaking parameter

3. Stability Limits of Asymmetric
Equilibria
In addition to the above previously

discussed equilibria, the ideal stability of some
up/down asymmetric equilibria was also
examined. Two such shapes are shown in Fig.
4. These shapes are chosen to couple to the
upper (106975) and lower (163111) divertors

 

Fig. 4.  Asymmetric equilibria optimized to
couple of the upper (106975) and lower
(163111) divertors in DIII-D.

in DIII-D. (The latter is only a proposed shape at this time, whereas the former has been
used in experiments). Stability analysis of these equilibria yields the following β-limits
corresponding to a peaking factor of ~2.5. For 106975 the βN-limits are 2.67, 2.98, and
2.98 respectively for the n = 1, 2, and ballooning modes (limiting value is βN = 2.67).
Similarly, for 163111 the β-limits are 3.85, 3.85, and 4.59 respectively (limiting βN =
3.85). Both limiting βs for these specific shapes are ~25% below the optimum found
above for the symmetric equilibria

4.  Conclusions
Plasma boundary shape and the pressure profile are important for determining global

plasma stability. The pressure profile plays a significant role in setting the β-limits for the
n = 1 and 2 modes, particularly the former. Shape plays a greater role in setting the n = 2
stability limit. The optimum β is a complex function of the shape parameters κ, δ, and ζo.
GATO and DCON agree quite well on both the n = 1 and 2 stability limits. This fact has
made this study possible as stability analysis of all the cases with GATO alone would have
been prohibitive in terms of time
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